CALCULATION POLICY: 4 OPERATIONS

Version 1 - April 2021

Maths at KHA

Our mathematics curriculum at Kingfisher Hall is designed to enable success for every child, regardless of background or ability, and to equip them with the necessary knowledge and skills required for a bright future. We ensure that as pupils move through the programmes of study, they are afforded opportunities to deepen and consolidate their understanding to embed long-term memory, as well as given frequent chances to apply their mathematical knowledge and skills in real life and cross-circular scenarios. Our curriculum driver of "A force for positive change" underpins every aspect of mathematics, and is embedded in teaching and learning and develop the child as a whole.

The Concrete-Pictorial-Abstract (CPA) approach underpins our teaching and learning to enable all children to deepen their contextual understanding of concepts, with use of careful planning and engaging learning experiences. Agile and adaptive teaching ensures all groups of children are given the opportunity to master the knowledge needed to apply fluency in the fundamentals of mathematics, reason mathematically following a line of enquiry and solve problems by applying their mathematics to routine and non-routine problems with increasing sophistication in their learning.

Aim of This Policy

This calculation policy is designed to present the foundations of teaching and learning for the 4 operations through the CPA approach, and to ensure consistency and progression across the school. It is embedded in the National Curriculum and links closely (but not exclusively) with the White Rose Hub Scheme of Learning. It should be used a guide and reference point when planning each concept

All Year Groups are included so that teachers can refer to children's prior learning and the expectations for their following school year

ADDITION

ADD PLUS + ALL TOGETHER SUM COMBINE MORE THAN INCREASED BY

EYFS - Addition

\begin{tabular}{|c|c|c|c|}
\hline Concrete \& Pictorial \& Abstract \& Guidance

\hline \begin{tabular}{l}

- Matching numbers to objects

- Matching numbers to patterns

- Counting on fingers in a consistent way

- Total numbers in two groups by counting all of them

$$
+ \text { But }
$$

- Use of real cubes and Numicon five-wise and pair-wise

- 5 frames: One more

- Progressing to 10 frames

(Both Five-wise and Pair-wise)

- Subitising of numbers using Numicon, dice, counters on 5 frame

- Once known doubles are established, used patterns to help add numbers eg. $4+4+1$

- Postbox eg. Posting a 3 Numicon and 1 more, how much do I have?

 \&

- Counting forwards in 1's, 2's and 5s and 10's using stories, rhymes and songs eg. Once a caught a fish alive, 5 little ducks, 5 green bottles

Let's sing a 1 more song.

0 green bottles sitting on the wall, 0 green bottles sitting on the wall,

if $\mathbf{1}$ green bottle was added to the wall, there'd be 1 green bottle sitting on the wall.

Let's sing a 1 more song.

1 green bottle sitting on the wall, 1 green bottle sitting on the wall, if $\mathbf{1}$ more green bottle was added to the wall, there'd be 2 green bottles sitting on the wall.

- Children's mark making

- Drawing round Numicon

- Pictorial representations of real objects for worded questions:

Terry has 3 apples and Tony has 2 apples. How many altogether?

- Games - "One more" with die game

 \&

- Counting forwards in 1's, 2's and 5s and 10's using stories, rhymes and songs eg. Once a caught a fish alive, 5 little ducks, 5 green bottles

- Begin to recognise numerals up to 5 .

- Count up to 20.

- Estimate the amount of objects and then counting the check within 20.

Kace to Irace

Oracy Sentence Stems:

There are more items.
\qquad add \qquad is equal to \qquad

 \&

Once children have filled the 5 frames, progress to 10 frames using double sided counters and different orientations

Subitising counters in different arrangements in the frame to show addition calculations

Number recognition - children should learn to instantly recognise numbers from different numbers

Digit dog challenges
\end{tabular}

\hline
\end{tabular}

Year 1 - Addition

Year 2 - Addition

Concrete	Pictorial	Abstract	Guidance
- Continued use of Numicon and 10s frames - Part Part Whole models using Base 10 - Addition of 10 s using Base $10 \mathrm{eg} .43+10$ - Moving to exchanging across tens and hundred eg. $93+10$ - Base 10 and Cuisenaire Number Tracks for adding 10s e.g $13+10$ and $23+20$ Concrete bar models using Numicon and Base 10	- Pictorial representations of Base 10 - Part Part Whole Models - Bar Models (Continuous) - Partitioning into 10 s and 1 s using number lines	- Use of addition and equals signs to write number sentences of bonds up to 20 and derive fact families eg. $13+7=20$ $7+13=20$ Link to subtraction: $\begin{aligned} & 20-7=13 \\ & 20-13=7 \end{aligned}$ - Recognise Patterns in Addition Number Sentences $\begin{aligned} & 53+10=63 \\ & 63+10=73 \\ & 73+10=83 \\ & 83+10=93 \\ & 93+10=103 \end{aligned}$ Oracy Sentence Stems: The picture tells me I need to add the numbers. The parts are known/unknown. The whole is known/unknown. I can partition \qquad into \qquad and \qquad . \qquad ones/tens add \qquad ones/tens is equal to -. \qquad I will exchange one ten for ten ones. \qquad add \qquad is equal to \qquad	Adding 10 to a number Adding 20 to a number Start addition with no regrouping, and gradually build up to regrouping through 10,50 and 100 Non-Statutory Guidance from the National Curriculum: Recording addition in columns supports place value and prepares for formal written methods with larger numbers (See Year 3 CPA examples)

Year 3 - Addition

Year 4 - Addition

- Use of place value counters for columnar addition

- Use of place value counters for Bar Models (continuous)

Year 5 - Addition

SUBTRACTION

SUBTRACT MINUS -- TAKEWAY FEWER THAN DIFFERENCE LESS DECREASE

EYFS - Subtraction

Concrete	Pictorial	Abstract	Guidance
- Counting backwards in 1's, 2's and 5 s and 10 's using stories, rhymes and songs eg. 5 little monkeys - Squash Numicon into playdough and cut parts off - what's left? (4imos - Numicon and objects - children physically remove 1 - 5 frames: One less - Progressing to 10 frames (Both Five-wise and Pair-wise)	- Counting backwards in 1 's, 2^{\prime} s and 5 s and 10^{\prime} 's using stories, rhymes and songs eg. 5 little ducks Let's sing a subtraction of 1 song. 5 little ducks went swimming one day Over the hill and far away Mother duck went 'quack, quack, quack' and only 4 little ducks came back. - Children's mark making - Pictorial representations of real objects for worded questions: We made 6 cakes. We ate 2 of them. How many cakes are left?	- Counting backwards in 1's, 2's and 5 s and 10's using stories, rhymes and songs eg. 5 little ducks - Begin to recognise numerals up to 5 . Oracy Sentence Stems: I start with \qquad and takeaway \qquad there is \qquad left. There are \qquad fewer items.	Digit dog challenges "Fewer" to be used when the items are countable Use fairy tales to look at counting

Year 1 - Subtraction

Concrete	Pictorial	Abstract	Guidance
- Squash Numicon into playdough and cut parts off - what's left? (see EYFS subtraction) - Numicon and objects eg. 6-2 eg. $9-3=6$ 5 frames - Progressing to 10 frames (Both Five-wise and Pair-wise) - Chalk out number lines to count back on physically - Number tracks - Concrete Bar Models using real life objects (Comparison)	- Drawing jumps on prepared number lines eg. 11-7 - Find difference by counting up number lines - Pictorial representations of objects crossed out $00000 \phi \phi \phi$ - Drawn Bar modelling from concrete objects (discrete) - Provide children with squares with pictures of objects onto glue and stick discrete bar models and then cross out	- Use of fingers eg. Put 13 in your head, count back 4 . What number are you at? - Number sentences using - and = - Subtract multiples of 10 eg. $50-20=30$ - Relationships/Related facts (Summer Term) Relationships/ Related Facts $\begin{array}{ll} 5-2=\square & \square=5-2 \\ 5-\square=3 & 3=\square-2 \\ \square-2=3 & 3=5-\square \\ -\square=3 & 3=\square-\square \end{array}$ Oracy Sentence Stems: \qquad subtract \qquad is equal to \qquad When we subtract, we start with the whole. The whole is \qquad The parts are \qquad and \qquad To find the unknown part/whole I need to \qquad The difference between \qquad and \qquad is \qquad	To develop bar modelling: Work on the same, before working on difference: eg. There are 3 boys in the class, there are the same amount of girls. How many girls are there? There are 6 boys in the class, and 4 girls. Find the difference between the number of girls and boys. Physically do this with children standing on A3 paper to represent bars.

Year 2 - Subtraction

Concrete	Pictorial	Abstract	Guidance
- Numicon (Subtracting 10s) - Base 10 (Subtracting 10s and subtracting 1s) - Base 10 or place value counters with "Takeaway Pot" - Introduce the concept of exchange through moving objects physically	- Pictorial representation of Base 10 Tens Ones - Counting back by partitioning when numbers aren't close together eg. 46-18 - Find the difference (subtraction) by counting on eg. 23-18-5 eg. 42 - 27 (add multiples of 10 first) - Continuous Bar models	- Bonds to 20 - Derive facts families $\begin{array}{r} 13+7=20 \\ 7+13=20 \\ 20-7=13 \\ 20-13=7 \end{array}$ Oracy Sentence Stems: The picture tells me I need to subtract the numbers. The parts are known/unknown. The whole is known/unknown. I can partition \qquad into \qquad and \qquad . \qquad ones/tens add \qquad ones/tens is equal to \qquad I will exchange one ten for ten ones. \qquad subtract \qquad is equal to \qquad When we subtract, we start with the whole \qquad and \qquad have a difference of \qquad \qquad and \qquad have a difference of \qquad	Recognise and use the inverse relationship between addition and Subtraction. Show that subtraction is not commutative (done in any order) Non-Statutory Guidance from the National Curriculum: Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers (See Year 3 CPA examples)

Calculation Policy: 4 Operations

Year 3 - Subtraction

Year 5 - Subtraction

Year 6 - Subtraction

Concrete	Pictorial	Abstract	Guidance
- As Above	- Bar Models for Increasingly Complex Multi-Step Problems Tho muribens when added togeller toval 7I The differce behweer the two numbas is 25 What are the he alcubect? * add the differere. Soblad the differve	- Formal Columnar Subtraction up 7 digits $\begin{array}{r} H \quad{ }^{9} 0 \cdot t \\ \text { T }^{\prime} 0^{\prime} s \cdot{ }^{3} t^{\prime} 1 \\ \text { th } \\ \hline \end{array}$ Oracy Sentence Stems: When there are no brackets, division is completed before addition and subtraction. The most efficient way to subtract these numbers is by \qquad because \qquad The calculation tells me I need to subtract the numbers. If the column total is equal to ten or more we must exchange. \qquad million subtract \qquad million is equal to \qquad	To subtract successfully, children need to be able to: - Recall subtraction facts to 20 - Subtract multiples of 10 (such as 160 - 70) using the related subtraction fact 16 -7 and their knowledge of place value - Partition two-digit and three-digit numbers into multiples of one hundred, ten and one in different ways (e.g. partition 74 into $70+4$ or $60+14$). Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for subtraction. Children should be presented with calculations horizontally to practise setting out the vertical columnar method. eg. 300-11 or 300-111 Children should record their written calculations using M HHT TTH TH H T O t h th to reinforce the place value of each digit in the calculation.

MULTIPLICATION

```
MULTIPLY TIMES X PRODUCT BY AREA DOUBLE TWICE TRIPLE OF
```


EYFS - Multiplication

Concrete	Pictorial	Abstract	Guidance
- Understand concept and vocabulary of multiplication (groups of, multiplied by, x times) through practical activities in meaningful contexts eg. How many wheels do we need to make 3 Noddy cars? - Grouping objects in twos or threes, then adding groups of the same number - Begin to use number lines/tracks/PE ladders (frogs) - Doubles and pairs - Numicon Feely Bag - Take out two of the same - Numicon spinner game (1-5)	- Children's mark making - Jumps on a number line	- Being able to count in 2 and 10 by rote - Begin to write down answers to number sentence stems - Begin to write "Doubles 2 = " Oracy Sentence Stems: \qquad groups of \qquad are equal to \qquad The pattern is increasing in \qquad Double \qquad is \qquad	Children can write $2+2+2=6$ Make use of pairs in illustrations eg. Cinderella's shoes Noah's Ark

Year 1 - Multiplication

Concrete

Calculation Policy: 4 Operations

Year 2 - Multiplication

Concrete	Pictorial	Abstract	Guidance
- Use of arrays to show multiplication sentences - Cuisenaire tracks (2s, 5s, 10s) $T\|\mid$ - Doubles of all numbers up to 20 by partitioning and recombining eg. $17+17$ - Jumping on Chalk Number Lines	$\begin{aligned} & 00000 \\ & 00000 \\ & 4+4=8 \\ & 2 \text { groupt of } 4=8 \\ & 2 \times 4=8 \end{aligned}$ $2+2+2+2=8$ 4 grops of $2=8$ $4 \times 2=8$ - Use of number lines (discrete moving to continuous)	- Number sentences of repeated addition moving to use of x symbol $\begin{array}{ll} 5+5+5=15 & 3+3+3+3+3 \\ 3 \text { group of } 5=15 & 5 \text { groupe of }+3=15 \\ 3 \times 5=15 & 5 \times 3=15 \end{array}$ Oracy Sentence Stems: There are \qquad parts with a value of \qquad - The whole is \qquad . \qquad groups of \qquad is equal to \qquad \qquad multiplied by \qquad is equal to \qquad -	By the end of Year 2, children must know the times tables facts for 2,5 and 10. Children should be secure with the concept that the multiplication of two numbers can be done in any order (commutative).

Calculation Policy: 4 Operations

Year 3 - Multiplication

Concrete	Pictorial	Abstract	Guidance
- Cuisenaire tracks to show multiples of numbers - Area Method: Cuisenaire on Squared Paper eg. 13×4 - Grouping Base 10 and Place Value Counters - Grouping Base 10 with exchange of 1s	- Area Method: Drawn on squared paper (draw round Cuisenaire) eg. 13×4 - Grid Method (Area not to scale) - Jumps on number lines Oracy Sentence Stems: To find ten times as many, multiply by ten. \qquad is a multiple of \qquad because \qquad \qquad multiplied by \qquad is equal to \qquad . Products in the \qquad time table are also in the \qquad time table. When we multiply, the parts are known but the whole is	- Expanded Columnar Multiplication - Formal Columnar Multiplication (Use a multiplier from times tables children are secure with) 2 digit by 1 digit (no exchange) 2 digit by 1 digit (exchange) 2 digit by 1 digit (3 digit answer)	To multiply successfully, children need to be able to: - Recall multiplication facts to 10 x 10 - Partition numbers into multiples of 100, 10 and 1 - Work out products such as 70 $\times 5,70 \times 50,700 \times 5$ or $700 \times$ 50 using the related fact 7×5 and their knowledge of place value - Add two or more single-digit numbers mentally - Add multiples of 10 (such as $60+70$) or of 100 (such as $600+700$) using the related addition fact, $6+7$, and their knowledge of place value - Add combinations of whole numbers using the column method It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for multiplication. Children should record their written calculations' using H T O to reinforce the place value of each digit in the calculation.
$\text { Kingfisher } \mathrm{Häa}_{\mathrm{a}} \mathrm{l}$ PRIMARY ACADEMY			22

Year 4 - Multiplication

Year 5 - Multiplication

- Cuisenaire Rods and Base 10 for Area method: 3 digits by 2 digits eg. 13×18

- Place Value Counters for Grid Method: 3 digits by 2 digits eg. 234×32

Kingfisher Háll
PRIMARY ACADEMY

Year 6 - Multiplication

DIVISION

DIVIDE EQUALPARTS \div HALF OF GOES INTO QUOTIENT RATIO / -----

EYFS - Division

Concrete	Pictorial	Abstract	Guidance
- Sharing 1 to 1 eg. giving out cups - 5 cups for 5 people, 10 pieces of fruit to 10 children - Matching 1 to 1 eg. Place settings at a Teddy Bears' Picnic plates, place mates, knives, forks - Sharing out concrete objects Sharing 6 cakes between 2 people Share a bag of 10 sweets between 2 childrenone for you, one for me - Grouping objects equally 10 grouped into 2 s How many groups? How many pairs of socks are there in the "launderette"? 46 等昜 - Introduce halving practically - Cutting lengths in half eg. String, strips of paper, playdough snakes, cubes	- Mark-making - Pre-cut pictures for children to share and group \qquad of 4 Oracy Sentence Stems: If we share equally, each person gets \qquad If there are 5 cups and 5 children, each child g The teddies have 1 plate each.	- Mark-making	Division should be introduced through the concept of sharing 1 to 1, progressing to sharing amounts equally and then grouping objects. Make use of sharing and groups in illustrations eg. Beans in Jack and the Bean Stalk, Food in Teddy Bear's Picnic

Year 1 - Division

Calculation Policy: 4 Operations

Year 2 - Division

Concrete	Pictorial	Abstract Guidance
- Share out quantities into equal groups using cubes, counters and other objects. - Use of Numicon and Base 10 for halving numbers (sharing) - Use of Numicon for grouping. How many groups of 5 in 20 ? Use of contextual questions: 20 children going on a school trip. Each car holds 5 people; how many cars are needed? - Use of arrays. Eg. There are 20 cabbages and they are put into rows of 5 . How many rows are there? - Concrete Bar Models to represent division Use of Cuisenaire number tracks eg. $15 \div 5$ \square	- Grouping - Use number tracks/lines for questions eg.. How many 2 s in 10 ? "How many 5s are there in 20?" Pictorial representations of bar models Bar models (continuous)	- Understand ' $\div 2$ ' as 'half of'. - Understand that ' $\div 4$ ' as 'quarter of'. - Understand that division is not commutative. - Recognise relationship between x and \div - Record using division (\div) and equals ($=$) signs. - Divide 10 into 5 groups. How many are in - each group? Division should be taught first through the concept of sharing amounts equally and then progressing to grouping objects. Oracy Sentence Stems: \qquad shared into \qquad equal parts \qquad is \qquad - \qquad divided by \qquad is equal to \qquad -. We exchange 1 ten for 10 ones. When we divide, the whole is known and the number or parts or the value of the parts is unknown \qquad divided by \qquad is equal to \qquad .

alculation Policy: 4 Operations

Year 3 - Division

Concrete

Year 4 - Division

Concrete	Pictorial	Abstract	Guidance
- As per year 3, grouping counters $33 \div 3$ - Moving to grouping place value counters in a formal method layout: No exchange with a remainder of 0 3 digit with exchange with a remainder of 0 - Introduction of remainder greater than 0 using Numicon and Cuisenaire tracks $38 \div 5$ 	- Pictorial representation of grouping - Bar modelling (continuous) Oracy Sentence Stems: For every group of one twelve, there are two groups of six. \qquad is divided into groups of \qquad .There are \qquad groups and a remainder of \qquad . The remainder is always less than the divisor. When we divide, the whole is known and the number or parts or the value of the parts is also known. How many groups of 500 are there in 100 ? There are 0 groups of 5 hundreds in 1 hundred. I will exchange 100 for 10 tens. How many groups of 5 tens are there in 15 tens? There are 3 groups of 5 tens in 15 tens.	- Formal short division 3 digit $\div 1$ digit (exchanging tens to ones and a remainder of 0) 3 digit $\div 1$ digit (exchanging hundreds to tens and a remainder of 0) 3 digit $\div 1$ digit (exchanging twice and a remainder of 0) Use of Os Remainders greater than 0 $\begin{gathered} 212 r 1 \\ 4 \longdiv { 8 4 9 } \end{gathered}$	Comfortable numbers should be used for questions to enable children to practise the method with ease. The concept of a remainder of 0 should be taught to allow for conceptual progression to remainders greater than 0 . To calculate written methods of division successful, children also need to be able to: - Estimate how many times one number divides into another - for example, how many sixes there are in 47 , or how many 23 s there are in 92; - Multiply a two-digit number by a single-digit number mentally; - Subtract numbers using the column method.

Year 5 - Division

Concrete	Pictorial	Abstract	Guidance
- Place Value counters used to consolidate the language of grouping and exchange for short and long division Oracy Sentence Stems: \qquad is divided into groups of \qquad remainder of \qquad The remainder is always less than How many groups of 4 thousand are 2 groups of 2 thousand in 8 th remaining. How many groups of 4 hundred a 1 group of 4 hundred in 4 hundre remaining. How many groups of 4 tens are th of 4 tens in 4 tens. I have no tens How many groups of 4 ones are t groups of 4 ones in 8 tens. I have	- As above There are \qquad groups and a e divisor. there in 8 thousand? There sand. I have no thousands there in 4 hundred? There is have no hundreds in 4 tens? There is 1 group maining. e in 8 ones? There are 2 ones remaining.	- Consolidation of Short Division (See Year 4 and 5) - Formal Long Division 4 digit $\div 1$ digit (remainder of 0) $4 \longdiv { 2 } 4 1 1 2 \text { ro }$ 4 digit $\div 1$ digit (Use of 0 s) Remainders as fractions and decimals $\begin{aligned} & 10 \div 4 \quad \frac{10}{4}=2 \frac{2}{4}=2 \frac{1}{2} \\ & 4 \longdiv { 1 0 . 5 } \end{aligned}$ 4 digit $\div 2$ digit (Divisors greater than 12)	Comfortable numbers should be used for questions to enable children to practise the method with ease. The concept of a remainder of 0 should be taught to allow for conceptual progression to remainders greater than 0 . To calculate written methods of division successful, children also need to be able to: -Estimate how many times one number divides into another - for example, how many sixes there are in 47 , or how many 23 s there are in 92; - Multiply a two-digit number by a single-digit number mentally; - Subtract numbers using the column method

